Arici, S. E., Kafkas, E., Kaymak, S. and Koc, N. K. 2014. Phenolic compounds of apple cultivars resistant or susceptible to
Venturia inaequalis
.
Pharm. Biol. 52: 904-908.
Aylor, D. E. and Anagnostakis, S. L. 1991. Active discharge distance of ascospores of
Venturia inaequalis
.
Phytopathology 81: 548-551.
Balasundram, N., Sundram, K. and Samman, S. 2006. Phenolic compounds in plants and agri-industrial by-products: antioxidant activity, occurrence, and potential uses.
Food Chem. 99: 191-203.
Barbehenn, R. V. and Constabel, C. P. 2011. Tannins in plant-herbivore interactions.
Phytochemistry 72: 1551-1565.
Bassimba, D. D. M., Mira, J. L., Sedano, M. E. and Vicent, A. 2017. Control and yield loss modelling of circular leaf spot of persimmon caused by
Mycosphaerella nawae
.
Ann. Appl. Biol. 170: 391-404.
Berbegal, M., Armengol, J. and García-Jiménez, J. 2011. Evaluation of fungicides to control circular leaf spot of persimmon caused by
Mycosphaerella nawae
.
Crop Prot. 30: 1461-1468.
Berbegal, M., Pérez-Sierra, A., Armengol, J., Park, C. S. and García-Jiménez, J. 2010. First report of circular leaf spot of persimmon caused by
Mycosphaerella nawae in Spain.
Plant Dis. 94: 374.
Bhattacharya, A., Sood, P. and Citovsky, V. 2010. The roles of plant phenolics in defence and communication during
Agrobacterium and
Rhizobium infection.
Mol. Plant Pathol. 11: 705-719.
Boubakri, H. 2017. The Role of Ascorbic Acid in Plant-Pathogen Interactions. In: Ascorbic Acid in Plant Growth, Development and Stress Tolerance, eds. by M. Hossain, S. Munné-Bosch, D. Burritt, P. Diaz-Vivancos, M. Fujita and A. Lorence, pp. 255-271. Springer, Cham, Switzerland.
Boubakri, H., Gargouri, M., Mliki, A., Brini, F., Chong, J. and Jbara, M. 2016. Vitamins for enhancing plant resistance.
Planta 244: 529-543.
Brook, P. J. 1969a. Effects of light, temperature, and moisture on release of ascospores by
Venturia inaequalis (Cke.) Wint.
New Zealand J. Agric. Res. 12: 214-227.
Brook, P. J. 1969b. Stimulation of ascospore release in
Venturia inaequalis by far red light.
Nature 222: 390-392.
Burgess, T. I., Andjic, V., Hardy, G. S., Dell, B. and Xu, D. 2006. First report of Phaeophleospora destructans in China. J. Trop. For. Sci. 18: 144-146.
Carbone, I. and Kohn, L. M. 1999. A method for designing primer sets for speciation studies in filamentous ascomycetes.
Mycologia 91: 553-556.
Crous, P. W. 2009. Taxonomy and phylogeny of the genus Mycosphaerella and its anamorphs. Fungal Divers. 38: 1-24.
Crous, P. W. and Braun, U. 2003.
Mycosphaerella and its anamorphs: 1. Names published in Cercospora and Passalora
. CBS Biodiversity Series. Centraalbureau voor Schimmelcultures (CBS), Utrecht, Netherlands. pp. 1-571.
Crous, P. W., Braun, U. and Groenewald, J. Z. 2007.
Mycosphaerella is polyphyletic.
Stud. Mycol. 58: 1-32.
Crous, P. W., Ferreira, F. A. and Sutton, B. C. 1997. A comparison of the fungal genera
Phaeophleospora and
Kirramyces (coelomycetes).
S. Afr. J. Bot. 63: 111-115.
Crous, P. W. and Groenewald, J. Z. 2005. Hosts, species and geno-types: opinions versus data.
Australas. Plant Path. 34: 463-470.
Crous, P. W., Kang, J. C. and Braun, U. 2001. A phylogenetic redefinition of anamorph genera in
Mycosphaerella based on ITS rDNA sequence and morphology.
Mycologia 93: 1081-1101.
Crous, P. W., Wingfield, M. J., Mansilla, J. P., Alfenas, A. C. and Groenewald, J. Z. 2006. Phylogenetic reassessment of
Mycosphaerella spp. and their anamorphs occurring on Eucalyptus. II.
Stud. Mycol. 55: 99-131.
Gadoury, D. M., Stensvand, A. and Seem, R. C. 1998. Influence of light, relative humidity, and maturity of populations on discharge of ascospores of
Venturia inaequalis
.
Phytopathology 88: 902-909.
Hassan, O. 2019. Epidemiology, biology and control of Plurivorosphaerella nawae, the causal agent of circular leaf spot of persimmon. Ph.D. thesis.Kyungpook National University, Sangju, Korea. pp. 131 pp.
Hassan, O. and Chang, T. 2019. Phylogenetic and morphological reassessment of
Mycosphaerella nawae, the causal agent of circular leaf spot in persimmon.
Plant Dis. 103: 200-213.
Hassan, O., Chang, T. and Hossain, A. 2020. Changes in the secondary compounds of persimmon leaves as a defense against circular leaf spot caused by
Plurivorosphaerella nawae
.
PLoS One 15: e0230286.
Hassan, O., Shin, J. S., Oh, N. K. and Chang, T. 2018. Inoculum dynamics and disease progress of circular leaf spot of persimmon caused by
Mycosphaerella nawae in inland Korea.
J. Plant Pathol. 100: 543-553.
Holb, I. J., Heijne, B. and Jeger, M. J. 2006. Effects of integrated Control measures on earthworms, leaf litter and
Venturia inaequalis infection in two European apple orchards.
Agric. Ecosyst. Environ. 114: 287-295.
Hong, C. and Michailides, T. J. 1998. Effect of temperature on the discharge and germination of ascospores by apothecia of
Monilinia fructicola
.
Plant Dis. 82: 195-202.
Hossain, A., Moon, H. K. and Kim, J.-K. 2018. Antioxidant properties of Korean major persimmon (
Diospyros kaki) leaves.
Food Sci. Biotechnol. 27: 177-184.
Hunter, G. C., Wingfield, B. D., Crous, P. W. and Wingfield, M. J. 2006. A multi-gene phylogeny for species of
Mycosphaerella occurring on Eucalyptus leaves.
Stud. Mycol. 55: 147-161.
Ikata, S. and Hitomi, T. 1929. Studies on circular leaf spot of persimmon caused by Mycosphaerella nawae
. Spec. Bull. Okayama Pre. Agric. Exp. Stn. 33: 1-36. (In Japanese)
Jacobs, A., Truter, M. and Schoeman, M. H. 2014. Characterisation of
Mycosphaerella species associated with pink spot on guava in South Africa.
S. Afr. J. Sci. 110: 01-06.
James, J. R. and Sutton, T. B. 1982. Environmental factors influencing pseudothecial development and ascospore maturation of
Venturia inaequalis
.
Phytopathology 72: 1073-1080.
Jung, W.-Y. and Jeong, J.-M. 2012. Change of antioxidative activity at different harvest time and improvement of atopic dermatitis effects for persimmon leaf extract.
Korean J. Herbol. 7: 41-49.
Kang, S. W., Kwon, J. H., Lee, Y. S. and Park, C. S. 1993. Effects of meteorological factors on perithecial formation and release of ascospores of Mycosphaerella nawae from the overwintered persimmon. RDA J. Agri. Sci. 35: 337-343. (In Korean)
Kulbat, K. 2016. The role of phenolic compounds in plant resistance. Biotechnol. Food Sci. 80: 97-108.
Kumar, A., Mali, P. C. and Manga, V. K. 2010. Changes of some phenolic compounds and enzyme activities on infected pearl millet caused by Sclerospora graminicola
. Int. J. Plant Physiol. Biochem. 2: 6-10.
Kwon, J. H., Kang, S. W., Chung, B. K. and Park, C. S. 1995. Environmental factors affecting ascospore release of Mycosphaerella nawae, the causal organism of the spotted leaf casting of persimmon. Korean J. Plant Pathol. 11: 344-347. (In Korean)
Kwon, J.-H., Kang, S.-W., Park, C.-S. and Kim, H.-K. 1998a. Further evidence that Ramularia-type conidia in vivo plays a role as a secondary inoculum of Mycosphaerella nawae
. Korean J. Plant Pathol. 14: 393-396. (In Korean)
Kwon, J.-H., Kang, S.-W., Park, C.-S. and Kim, H.-K. 1998b. Identification of the imperfect stage of Mycosphaerella nawae causing circular leaf spot of persimmon in Korea. Korean J. Plant Pathol. 14: 397-401.
Kwon, J. H., Kang, S. W., Park, C. S. and Kim, H. K. 1998c. Microscopic observation of the pseudothecial development of Mycosphaerella nawae on persimmon leaves infected by ascospore and conidia. Korean J. Plant Pathol. 14: 408-412.
Kwon, J.-H. and Park, C.-S. 2004. Ecology of disease outbreak of circular leaf spot of persimmon and inoculum dynamics of
Mycosphaerella nawae
.
Res. Plant Dis. 10: 209-216. (In Korean)
Lee, S.-Y., Lim, Y.-S. and Jung, H.-Y. 2016. Molecular phylogeny and morphology of
Mycosphaerella nawae, the causal agent of circular leaf spot on persimmon.
Mycobiology 44: 191-201.
Lee, Y. S. and Huang, C. S. 1973. Effect of climatic factors on the development and discharge of ascospores of the citrus black spot fungus. J. Taiwan Agric. Res. 22: 135-144.
Lin, D., Xiao, M., Zhao, J., Li, Z., Xing, B., Li, X. et al. 2016. An overview of plant phenolic compounds and their importance in human nutrition and management of type 2 diabetes.
Molecules 21: 1374.
Liu, Y. J., Whelen, S. and Hall, B. D. 1999. Phylogenetic relationships among ascomycetes: evidence from an RNA polymerse II subunit.
Mol. Biol. Evol. 16: 1799-1808.
Matern, U. and Kneusel, R. E. 1988. Phenolic compounds in plant disease resistance.
Phytoparasitica 16: 153-170.
Martínez-Minaya, J., Conesa, D., López-Quílez, A., Mira, J. L. and Vicent, A. 2021. Modeling inoculum availability of
Plurivorosphaerella nawae in persimmon leaf litter with bayesian beta regression.
Phytopathology 111: 1184-1192.
Matsuo, T. and Ito, S. 1978. The chemical structure of kakitannin from immature fruit of the persimmon (
Diospyros kaki L.).
Agric. Biol. Chem. 42: 1637-1643.
Mikulič Petkovšek, M. M., Štampar, F. and Veberič, R. 2009. Accumulation of phenolic compounds in apple in response to infection by the scab pathogen, Venturia inaequalis. Physiol
. Mol. Plant Pathol. 74: 60-67.
Mikulic Petkovsek, M., Slatnar, A., Stampar, F. and Veberic, R. 2011. Phenolic compounds in apple leaves after infection with apple scab. Biol. Plantarum. 55: 725-730.
Mikulic‐Petkovsek, M., Schmitzer, V., Stampar, F., Veberic, R. and Koron, D. 2014. Changes in phenolic content induced by infection with
Didymella applanata and
Leptosphaeria coniothyrium, the causal agents of raspberry spur and cane blight.
Plant Pathol. 63: 185-192.
Moncalvo, J. M., Wamg, H. H. and Hseu, R. S. 1995. Phylogenetic relationships in Ganoderma inferred from the internal transcribed spacers and 25S ribosomal DNA sequences.
Mycologia 87: 223-238.
Mondal, S. N. and Timmer, L. W. 2002. Environmental factors affecting pseudothecial development and ascospore production of
Mycosphaerella citri, the cause of citrus greasy spot.
Phytopathology 92: 1267-1275.
Pereira, D. M., Valentão, P., Pereira, J. A. and Andrade, P. B. 2009. phenolics: from chemistry to biology.
Molecules 14: 2202-2211.
Pretorius, M. C., Crous, P. W., Groenewald, J. Z. and Braun, U. 2003. Phylogeny of some cercosporoid fungi from Citrus
. Sydowia 55: 286-305.
Quaedvlieg, W., Binder, M., Groenewald, J. Z., Summerell, B. A., Carnegie, A. J., Burgess, T. I. et al. 2014. Introducing the consolidated species concept to resolve species in the
Teratosphaeriaceae
.
Persoonia 33: 1-40.
Quaedvlieg, W., Groenewald, J. Z., de Jesús Yáñez-Morales, M. and Crous, P. W. 2012. DNA barcoding of
Mycosphaerella species of quarantine importance to Europe.
Persoonia 29: 101-115.
Reuveni, M. 2001. Activity of trifloxystrobin against powdery and downy mildew diseases of grapevines.
Can. J. Plant Pathol. 23: 52-59.
Ross, R. G. and Hamlin, S. A. 1962. Production of perithecia of
Venturia inaequalis (Cke.) Wint. on sterile apple leaf discs.
Can. J. Bot. 40: 525-527.
Rossi, V., Ponti, I., Marinelli, M., Giosuè, S. and Bugiani, R. 2001. Environmental factors influencing the dispersal of
Venturia inaequalis ascospores in the orchard air.
J. Phytopathol. 149: 11-19.
Savi, D. C., Shaaban, K. A., Gos, F. M. W. R., Ponomareva, L. V., Thorson, J. S., Glienke, C. et al. 2018.
Phaeophleospora vochysiae Savi & Glienke sp. nov. isolated from
Vochysia divergens found in the Pantanal, Brazil, produces bioactive secondary metabolites.
Sci. Rep. 8: 3122.
Schijlen, E. G., Ric de Vos, C. H., van Tunen, A. J. and Bovy, A. G. 2004. Modification of flavonoid biosynthesis in crop plants.
Phytochemistry 65: 2631-2648.
Stielow, J. B., Lévesque, C. A., Seifert, K. A., Meyer, W., Iriny, L., Smits, D. et al. 2015. One fungus, which genes? Development and assessment of universal primers for potential secondary fungal DNA barcodes.
Persoonia 35: 242-263.
Sung, G.-H., Sung, J.-M., Hywel-Jones, N. L. and Spatafora, J. W. 2007. A multi-gene phylogeny of
Clavicipitaceae (Ascomycota, Fungi): identification of localized incongruence using a combinational bootstrap approach.
Mol. Phylogenet. Evol. 44: 1204-1223.
Taylor, J. E. and Crous, P. W. 1999.
Phaeophleospora faureae comb. nov. associated with leaf spots on Faurea saligna (Proteaceae), with a key to the species of. Phaeophleospora. Fungal Divers. 3: 153-158.
Trail, F., Xu, H., Loranger, R. and Gadoury, D. 2002. Physiological and environmental aspects of ascospore discharge in
Gibberella zeae (anamorph
Fusarium graminearum).
Mycologia 94: 181-189.
Trapero-Casas, A. and Kaiser, W. J. 1992. Development of
Didymella rabiei, the teleomorph of
Ascochyta rabiei, on chickpea straw.
Phytopathology 82: 1261-1266.
Treutter, D. and Feucht, W. 1990a. The pattern of flavan-3-ols in relation to scab resistance of apple cultivars.
J. Hort. Sci. 65: 511-517.
Treutter, D. and Feucht, W. 1990b. Accumulation of flavan-3-ols in fungus-infected leaves of Rosaceae. J. Plant Dis. Protect. 97: 634-641.
Vicent, A., Bassimba, D. D. M. and Intrigliolo, D. S. 2011. Effects of temperature, water regime and irrigation system on the release of ascospores of
Mycosphaerella nawae, causal agent of circular leaf spot of persimmon.
Plant Pathol. 60: 890-908.
Vicent, A., Bassimba, D. D. M., Hinarejos, C. and Mira, J. L. 2012. Inoculum and disease dynamics of circular leaf spot of persimmon caused by
Mycosphaerella nawae under semiarid conditions.
Eur. J. Plant Pathol. 134: 289-299.
Videira, S. I. R., Groenewald, J. Z., Nakashima, C., Braun, U., Barreto, R. W., de Wit, P. J. G. M. et al. 2017.
Mycosphaerellaceae - chaos or clarity?
Stud. Mycol. 87: 257-421.
Weir, B. S., Johnston, P. R. and Damm, U. 2012. The
Colletotrichum gloeosporioides species complex.
Stud. Mycol. 73: 115-180.
White, T. J., Bruns, T., Lee, S. and Taylor, J. 1990. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: PCR protocols: a guide to methods and applications, eds. by M. A. Innis, D. H. Gelfand, J. J. Snisky and T. J. White, pp. 282-287. Academic Press, San Diego, CA, USA.
Winsor, C. P. 1932. The Gompertz curve as a growth curve.
Proc. Natl. Acad. Sci. U S A 18: 1-8.