Anahosur, K. H. and Patil, S. H. 1980. Chemical control of sorghum downy mildew in India.
Plant Dis. 64: 1004-1006.
Azcón-Aguilar, C. and Barea, J. M. 1997. Arbuscular mycorrhizas and biological control of soil-borne plant pathogens: an overview of the mechanisms involved.
Mycorrhiza 6: 457-464.
Bais, H. P., Park, S.-W., Weir, T. L., Callaway, R. M. and Vivanco, J. M. 2004. How plants communicate using the underground information superhighway.
Trends Plant Sci. 9: 26-32.
Bathke, K. J., Jochum, C. C. and Yuen, G. Y. 2022. Biological control of bacterial leaf streak of corn using systemic resistance-inducing
Bacillus strains.
Crop Prot. 155: 105932.
Berg, G., Köberl, M., Rybakova, D., Müller, H., Grosh, R. and Smalla, K. 2017. Plant microbial diversity is suggested as the key to future biocontrol and health trends.
FEMS Microbiol. Ecol. 95: fix050.
Blacutt, A. A., Gold, S. E., Voss, K. A., Gao, M. and Glenn, A. E. 2018.
Fusarium verticllioides: advancements in understanding the toxicity, virulence, and niche adaptations of a model mycotoxigenic pathogen of maize.
Phytopathology 108: 312-326.
Bressan, W. and Figueiredo, J. E. F. 2007. Efficacy and dose-response relationship in biocontrol of
Fusarium disease in maize by
Streptomyces spp.
Eur. J. Plant Pathol. 120: 311-316.
Budi, S. W., van Tuinen, D., Arnould, C., Dumans-Gaudot, E., Gianinazzi-Pearson, V. and Gianinazzi, S. 2000. Hydrolytic enzyme activity of PaeniBacillus sp. strain B2 and effects of th antagonistic bacterium on cell integrity of two soil-borne pathogenic fungi. Appl. Soil Ecol. 15: 191-199.
Castro del Ángel, E., Sánchez Arizpe, A., Galindo Cepeda, M. E. and Vázquez Badillo, M. E. 2020. Biological control of ear rot on maize genotypes with Trichoderma species. Rev. Bio. Cienc. 7: e965.
Chandra Nayaka, C., Uday Shankar, A. C., Reddy, M. S., Niranjana, S. R., Prakash, H. S., Shetty, H. S. et al. 2009. Control of
Fusarium verticillioides, cause of ear rot of maize, by
Pseudomonas fluorescens.
Pest. Manag. Sci. 65: 769-775.
Chandra Nayaka, S., Niranjana, S. R., Uday Shankar, A. C., Niranjan Raj, S., Reddy, M. S., Prakash, H. S. et al. 2010. Seed biopriming with novel strain of
Trichoderma harzianum for the control of toxigenic
Fusarium verticillioides and
fumonisins in maize.
Arch. Phytopathol. Plant Prot. 43: 264-282.
Chen, B., Han, H., Hou, J., Bao, F., Tan, H., Lou, X. et al. 2022. Control of maize sheath blight and elicit induced systemic resistance using
PaeniBacillus polymyxa strain SF05.
Microorganisms 10: 1318.
Chet, I. and Inbar, J. 1994. Biological control of fungal pathogens.
Appl. Biochem. Biotechnol. 48: 37-43.
Compant, S., Duffy, B., Nowak, J., Clément, C. and Barka, E. A. 2005. Use of plant growth-promoting bacteria for biocontrol of plant diseases: principles, mechanisms of action, and future pros-pects.
Appl. Environ. Microbiol. 71: 4951-4959.
Dang, L., Li, G., Yang, Z., Luo, S., Zheng, X. and Zhang, K. 2010. Chemical constituents from the endophytic fungus
Trichoderma ovalisporum isolated from
Panax notoginseng.
Ann. Microbiol. 60: 317-320.
Degani, O. and Dor, S. 2021.
Trichoderma biological control to protect sensitive maize hybrids against late wilt disease in the field.
J. Fungi 7: 315.
Djaenuddin, N., Sebayang, A., Nonci, N. and Muis, A. 2021. Compatibility of biocontrol agent formulas and synthetic fungicides in controlling maydis leaf blight on corn caused by Bipolaris maydis. IOP Conf. Ser. Earth Environ. Sci. 911: 012062.
Djaenuddin, N., Suriani, and Muis, A. 2020. Effectiveness of
Bacillus subtilis TM4 biopesticide formulation as biocontrol agent against maydis leaf blight disease on corn.
IOP Conf. Ser. Earth Environ. Sci. 484: 012096.
Fandohan, P., Hell, K., Marasas, W. F. O. and Wingfield, M. J. 2003. Infection of maize by
Fusarium species and contamination with fumonisin in Africa.
Afr. J. Biotechnol. 2: 570-579.
Figueroa-López, A. M., Cordero-Ramírez, J. D., Martínez-Álvarez, J. C., López-Meyer, M., Lizárraga-Sánchez, G. J., Félix-Gastélum, R. et al. 2016. Rhizospheric bacteria of maize with potential for biocontrol of
Fusarium verticillioides.
Springerplus 5: 330.
Glick, B. R. 1995. The enhancement of plant growth by free-living bacteria.
Can. J. Microbiol. 41: 109-117.
Golob, P., Kutukwa, N., Devereau, A., Bartosik, R. E. and Rodríguez, J. C. 2004. Maize. In: Crop Post-harvest: Science and Technology. Vol. 2. Durables, eds. by R. Hodges and G. Farrell, pp. 26-59. Blackwell Publishing Ltd., Ames, IW, USA.
Gruber, S., Omann, M., Rodrìguez, C. E., Radebner, T. and Zeilinger, S. 2012. Generation of
Trichoderma atroviride mutants with constitutively activated G protein signaling by using genetic in resistance as selection marker.
BMC Res. Notes 5: 641.
Harman, G. E., Howell, C. R., Viterbo, A., Chet, I. and Lorito, M. 2004.
Trichoderma species: opportunistic, avirulent plant symbionts.
Nat. Rev. Microbiol. 2: 43-56.
Heimpel, G. E. and Mills, N. J. 2017. Biological Control: Ecology and Applications. Cambridge University Press, Cambridge, UK. 386 pp.
Hernández-Rodríguez, A., Heydrich-Pérez, M., Acebo-Guerrero, Y., Velazquezdel Valle, M. G. and Hernández-Lauzardo, A. N. 2008. Antagonistic activity of Cuban native rhizobacteria against
Fusarium verticillioides (Sacc.) Nirenb. in maize (
Zea mays L.).
Appl. Soil. Ecol. 39: 180-186.
Hung, R., Lee, S. and Bennett, J. W. 2013.
Arabidopsis thaliana as a model system for testing the effects of Trichoderma volatile organic compounds. Fungal Ecol. 6: 19-26.
Isakeit, T. and Jaster, J. 2005. Texas has a new pathotype of
Peronosclerospora sorghi, the cause of sorghum downy mildew.
Plant Dis. 89: 529.
Jackson, T. A., Harveson, R. M. and Vidaver, A. K. 2007. Reemergence of Goss's wilt and blight of corn to the central high plains. Plant Health Prog. Online publication.
https://doi.org/10.1094/PHP-2007-0919-0
Jardine, D. J., and Claflin, L. E. 2016. Goss’s bacterial wilt and leaf blight. In: Compendium of Corn Diseases, eds. by G. P. Munkvold and D. G. White, 4th ed., p. 165. APS Press, St. Paul, MN, USA.
Khosravi, A. R., Mansouri, M., Bahonar, A. R. and Shokri, H. 2007. Mycoflora of maize harvested from Iran and imported maize.
Pak. J. Biol. Sci. 10: 4432-4437.
Kutawa, A. B., Ahmad, K., Ali, A., Hussein, M. Z., Wahab, M. A. A. and Sijam, K. 2021. State of the art on southern corn leaf blight disease incited by Cochliobolus heterostrophus: detection, pathogenic variability and novel control measures. Bulg. J. Agric. Sci. 27: 147-155.
Lee, S., Hung, R., Yap, M. and Bennett, J. W. 2015. Age matters: the effects of volatile organic compounds emitted by
Trichoderma atroviride on plant growth.
Arch. Microbiol. 197: 723-727.
Lee, S., Yap, M., Behringer, G., Hung, R. and Bennett, J. W. 2016. Volatile organic compounds emitted by
Trichoderma species mediate plant growth.
Fungal Biol. Biotechnol. 3: 7.
Lerda, P., Blaggi, M. B., Peralta, N., Ychari, S., Vazquez, M. and Bosio, G. 2005.
Fumonisins in foods from Cordoba (Argentina), presence and genotoxicity.
Food Chem. Toxicol. 43: 691-698.
Li, B., Kong, L., Qiu, D., Francis, F. and Wang, S. 2021. Biocontrol potential and mode of action of entomopathogenic bacteria
Xenorhabdus budapestensis C72 against
Bipolaris maydis.
Biol. Control 158: 104605.
López-Mondéjar, R., Ros, M. and Pascual, J. A. 2011. Mycoparasitism-related genes expression of
Trichoderma harzianum isolates to evaluate their efficacy as biological control agent.
Biol. Control 56: 59-66.
Marasas, W. F. 1995.
Fumonisins: their implications for human and animal health.
Nat. Toxins 3: 193-198.
Marin, S., Homedes, V., Sanchis, V., Ramos, A. J. and Magan, N. 1999. Impact of
Fusarium moniliforme and
F. proliferatum colonisation of maize on calorific losses and fumonisin production under different environmental conditions.
J. Stored Prod. Res. 35: 15-26.
Meena, B., Marimuthu, T., Vidyasekaran, P. and Velazhahan, R. 2001. Biological control of root rot of groundnut with antagonistic Pseudomonas fluorescens strains. J. Plant Dis. Prot. 108: 369-381.
Miedaner, T. and Juroszek, P. 2021. Global warming and increasing maize cultivation demand comprehensive efforts in disease and insect resistance breeding in north-western Europe.
Plant Pathol. 70: 1032-1046.
Muis, A. and Quimio, A. J. 2006. Biological contorl of banded leaf and sheath blight disease (
Rhizoctonia solani Kuhn) in corn with formulated
Bacillus subtilis BR23.
Indones. J. Agric. Sci. 7: 1-7.
Munkvold, G. P. 2003. Epidemiology of
Fusarium diseases and their mycotoxins in maize ears.
Eur. J. Plant Pathol. 109: 705-713.
Ons, L., Bylemans, D., Thevissen, K. and Cammue, B. P. A. 2020. Combining biocontrol agents with chemical fungicides for integrated plant fungal disease control.
Microorganisms 8: 1930.
Osdaghi, E., Robertson, A. E., Jackson-Ziems, T. A., Abachi, H., Li, X. and Harveson, R. M. 2022.
Clavibacter nebraskensis causing Goss's wilt of maize: five decades of detaining the enemy in the new world. Mol. Plant Pathol. Online publication.
https://doi.org/10.1111/mpp.13268
Pechanova, O. and Pechan, T. 2015. Maize-pathogen interactions: an ongoing combat from a proteomics perspective.
Int. J. Mol. Sci. 16: 28429-28448.
Pertot, I., Alabouvette, A., Hinarejos, E. and Franca, S. 2015. The Use of Microbial Biocontrol Agents against Soil-Borne Diseases. Epi-Agri, Agriculture & Innovation, Brussels, Belgium. 11 pp.
Piyaboon, O. 2022. Efficacy of Chaetomium globosum as biological control agents for controlling leaf blight of corn. NU. Int. J. Sci. 19: 1-8.
Ragsdale, N. N., Hylin, J. W., Sisler, H. D., Witt, J. M. and Alford, H. 1991. Health and environmental factors associated with agricultural use of fungicides. USDA/States National Pesticide Impact Assessment Program Fungicide Assessment Project 117. URL
http://cipm.ncsu.edu/piappud/ [8 November 2022].
Ruiz, N., Wielgosz-Collin, G., Poirier, L., Grovel, O., Petit, K. E., Mohamed-Benkada, M. et al. 2007. New Trichobrachins, 11-residue peptaibols from a marine strain of
Trichoderma longibrachiatum.
Peptides 28: 1351-1358.
Saravanakumar, K., Li, Y., Yu, C., Wang, Q.-Q., Wang, M., Sun, J. et al. 2017. Effect of
Trichoderma harzianum on maize rhizosphere microbiome and biocontrol of
Fusarium stalk rot.
Sci. Rep. 7: 1771.
Sartori, M., Nesci, A., Formento, Á. and Etcheverry, M. 2015. Selection of potential biological control of
Exserohilum turcicum with epiphytic microorganisms from maize.
Rev. Argent. Microbiol. 47: 62-71.
Sartori, M., Nesci, A., Montemarani, A., Barros, G., García, J. and Etcheverry, M. 2017. Preliminary evaluation of biocontrol agents against maize pathogens Exserohilum turcicum and Puccinia sorgh in field assays. Agric. Sci. 8: 1003-1013.
Schafer, K. S. and Kegley, S. E. 2002. Persistent toxic chemicals in the US food supply.
J. Epidemiol. Community Health 56: 813-817.
Seyi-Amole, D. O. and Onilude, A. A. 2021. Microbiological control: a new age of maize production. In: Cereal Grains, ed. by A. K. Goyal, Intech Open, London, UK.
Shifa, H., Gopalakrishnan, C. and Velazhahan, R. 2015. Efficacy of
Bacillus subtilis G-1 in suppression of stem rot caused by
Sclerotium rolfsii and growth promotion of groundnut.
Int. J. Agric. Environ. Biotechnol. 8: 111-118.
Shoda, M. 2002. Bacterial control of plant diseases.
J. Biosci. Bioeng. 89: 515-521.
Sireesha, Y. and Velazhahan, R. 2015. Biological control of downy mildew of maize caused by
Peronosclerospora sorghi under environmentally controlled conditions.
J. Appl. Nat. Sci. 8: 279-283.
Sitara, U. and Akhter, S. 2007. Efficacy of fungicides, sodium hypochlorite and neem seed powder to control seed borne pathogens of maize. Pak. J. Bot. 39: 285-292.
Stockmann-Juvala, H. and Savolainen, K. 2008. A review of the toxic effects and mechanisms of action of fumonisin B1.
Hum. Exp. Toxicol. 27: 799-809.
Sturz, A. and Christie, B. R. 2003. Beneficial microbial allelopathies in the root zone: the management of soil quality and plant disease with rhizobacteria.
Soil Tillage Res. 72: 107-123.
Voss, K. A., Smith, G. W. and Haschek, W. M. 2007.
Fumonisins: toxicokinetics mechanism of action and toxicity.
Anim. Feed Sci. Technol. 137: 299-325.
Wang, M., Ma, J., Fan, L., Fu, K., Yu, C., Gao, J. et al. 2015. Biological control of southern corn leaf blight by
Trichoderma atroviride SG3403.
Biocontrol Sci. Technol. 25: 1133-1146.