Aldwinckle, H. S., Bhaskara Reddy, M. V. and Norelli, J. L. 2002. Evaluation of control of fire blight infection of apple blossoms and shoots with SAR inducers, biological agents, a growth regulator, copper compounds, and other materials.
Acta Hortic. 590: 325-331.
Bahadou, S. A., Ouijja, A., Karfach, A., Tahiri, A. and Lahlali, R. 2018. New potential bacterial antagonists for the biocontrol of fire blight disease (
Erwinia amylovora) in Morocco.
Microb. Pathog. 117: 7-15.
Bibi, F., Yasir, M., Song, G. C., Lee, S. Y. and Chung, Y. R. 2012. Diversity and characterization of endophytic bacteria associated with tidal flat plants and their antagonistic effects on oomycetous plant pathogens.
Plant Pathol. J. 28: 20-31.
Broggini, G. A. L., Duffy, B., Holliger, E., Schärer, H.-J., Gessler, C. and Patocchi, A. 2005. Detection of the fire blight biocontrol agent
Bacillus subtilis BD170 (Biopro®) in a Swiss apple orchard.
Eur. J. Plant Pathol. 111: 93-100.
Cabrefiga, J., Bonaterra, A. and Montesinos, E. 2007. Mechanisms of antagonism of
Pseudomonas fluorescens EPS62e against
Erwinia amylovora, the causal agent of fire blight.
Int. Microbiol. 10: 123-132.
Chen, X. H., Scholz, R., Borriss, M., Junge, H., Mögel, G., Kunz, S. et al. 2009. Difficidin and bacilysin produced by plant-associated
Bacillus amyloliquefaciens are efficient in controlling fire blight disease.
J. Biotechnol. 140: 38-44.
Choi, H. J., Kim, Y. J., Lim, Y.-J. and Park, D. H. 2019. Survival of
Erwinia amylovora on surfaces of materials used in orchards.
Res. Plant Dis. 25: 89-93.
Choi, H. J., Kim, Y. J. and Park, D. H. 2022a. Extended longevity of
Erwinia amylovora vectored by honeybees under
in vitro conditions and its capacity for dissemination.
Plant Pathol. 71: 762.
Choi, J. H., Kim, J.-Y. and Park, D. H. 2022b. Evidence of greater competitive fitness of
Erwinia amylovora over
E. pyrifoliae in Korean isolates.
Plant Pathol. J. 38: 355-365.
Durairaj, K., Velmurugan, P., Park, J.-H., Chang, W.-S., Park, Y.-J., Sent-hilkumar, P. et al. 2017. Potential for plant biocontrol activity of isolated
Pseudomonas aeruginosa and
Bacillus stratosphericus strains against bacterial pathogens acting through both induced plant resistance and direct antagonism.
FEMS Microbiol. Lett. 364: fnx225.
Fallahzadeh-Mamaghani, V., Golchin, S., Shirzad, A., Mohammadi, H. and Mohamadivand, F. 2021. Characterization of
Paenibacillus polymixa N179 as a robust and multifunctional biocontrol agent.
Biol. Control 154: 104505.
Fravel, D. R. 2005. Commercialization and implementation of biocontrol.
Annu. Rev. Phytopathol. 43: 337-359.
Fried, A., Schell, E., Moltmann, E. and Wensing, A. 2013. Control of fire blight in Baden-Württenberg at the end of the streptomycin era. Acta Hortic. 1056: 55-56.
Ishimaru, C. A., Klos, E. J. and Brubaker, R. R. 1988. Multiple antibiotic production by Erwinia herbicola. Phytopathology 78: 746-750.
Kang, I.-J., Park, D. H., Lee, Y.-K., Han, S.-W., Kwak, Y.-S. and Oh, C.-S. 2021. Complete genome sequence of
Erwinia amylovora strain TS 3128, a Korean strain isolated in an Asian pear orchard in 2015.
Microbiol. Resour. Announc. 10: e00694-21.
Kim, S.-H., Lee, S. I., Kong, H. G., Cho, G. and Kwak, Y.-S. 2022. Screening and classification of anti-fire blight pathogen in apple endophytic bacterial library.
Korean J. Pestic. Sci. 26: 16-26. (In
Korean)
Kunz, S. 2006. Fire blight control in organic fruit growing-systematic investigation of the mode of action of potential control agents. In: Proceedings of the 1st International Symposium on Biological Control of Bacterial Plant Diseases, eds. by W. Zeller and C. Ullrich, pp249-253. Mitteilungen aus der Biologischen Bundesanstalt für Land- und Forstwirtschaft, Berlin, Germany
Lee, S. I., Kim, W., Kim, D.-R. and Kwak, Y.-S. 2021. Evaluation of anti-bacterial and synergistic effect of lichen extracts with antibiotics against fire blight pathogen, Erwinia amylovora. Korean J. Pestic. Sci. 25: 55-62. (In Korean)
McManus, P. S. and Jones, A. L. 1994. Role of wind-driven rain, aerosols, and contaminated budwood in incidence and spatial pattern of fire blight in an apple nursery.
Plant Dis. 78: 1059-1066.
Mikiciński, A., Puławska, J., Molzhigitova, A. and Sobiczewski, P. 2020. Bacterial species recognized for the first time for its biocontrol activity against fire blight (
Erwinia amylovora).
Eur. J. Plant Pathol. 156: 257-272.
Park, D. H., Lee, Y.-G., Kim, J.-S., Cha, J.-S. and Oh, C.-S. 2017. Current status of fire blight caused by Erwinia amylovora and action for its management in Korea. J. Plant Pathol. 99: 59-63.
Park, J., Kim, B., Song, S., Lee, Y. W. and Roh, E. 2022. Isolation of nine bacteriophages shown effective against
Erwinia amylovora in Korea.
Plant Pathol. J. 38: 248-253.
Park, J., Lee, G. M., Kim, D., Park, D. H. and Oh, C.-S. 2018. Characterization of the lytic bacteriophage phiEaP-8 effective against both
Erwinia amylovora and
Erwinia pyrifoliae causing severe diseases in apple and pear.
Plant Pathol. J. 34: 445-450.
Powney, R., Beer, S. V., Plummer, K., Luck, J. and Rodoni, B. 2011. The specificity of PCR-based protocols for detection of. Erwinia amylovora. Aust. Plant Pathol. 40: 87-97.
Pusey, P. L. 2002. Biological control agents for fire blight of apple compared under conditions limiting natural dispersal.
Plant Dis. 86: 639-644.
Reininger, V., Schöneberg, A., Gravalon, P. and Holliger, E. 2019. Fire blight efficacy field studies in Switzerland. In: 2nd International Symposium on Fire Blight of Rosaceous Plants, eds. by G. Sundin, A. Khan, E. Montesinos, A. Peil, J. Pulawska, F. Rezzonico, et al., p. 19. Traverse City, MI, USA. (Abstract)
Rong, S., Xu, H., Li, L., Chen, R., Gao, X. and Xu, Z. 2020. Antifungal activity of endophytic
Bacillus safensis B21 and its potential application as a biopesticide to control rice blast.
Pestic. Biochem. Physiol. 162: 69-77.
Roselló, G., Bonaterra, A., Francés, J., Montesinos, L., Badosa, E. and Montesinos, E. 2013. Biological control of fire blight of apple and pear with antagonistic Lactobacillus plantarum. Eur. J. Plant Pathol. 137: 621-633.
Sharifazizi, M., Harighi, B. and Sadeghi, A. 2017. Evaluation of biological control of
Erwinia amylovora, causal agent of fire blight disease of pear by antagonistic bacteria.
Biol. Control 104: 28-34.
Shemshura, O., Alimzhanova, M., Ismailova, E., Molzhigitova, A., Daugaliyeva, S. and Sadanov, A. 2020. Antagonistic activity and mechanism of a novel
Bacillus amyloliquefaciens MB40 strain against fire blight.
J. Plant Pathol. 102: 825-833.
Smits, T. H. M., Rezzonico, F., Kamber, T., Goesmann, A., Ishimaru, C. A., Stockwell, V. O. et al. 2010. Genome sequence of the biocontrol agent
Pantoea vagans strain C9-1.
J. Bacteriol. 192: 6486-6487.
Sunar, K., Dey, P., Chakraborty, U. and Chakraborty, B. 2015. Biocontrol efficacy and plant growth promoting activity of
Bacillus altitudinis isolated from Darjeeling hills, India.
J. Basic Microbiol. 55: 91-104.
van der Zwet, T., Orolaza-Halbrendt, N. and Zeller, W. 2012. Fire Blight: History, Biology, and Management. APS Press, St. Paul, MN, USA. 421 pp.
Vanneste, J. L., Cornish, D. A., Yu, J. and Voyle, M. D. 2002. P10c: a new biological control agent for control of fire blight which can be sprayed or distributed using honey bees.
Acta Hortic. 590: 231-235.
Whipps, J. M. and McQuilken, M. P. 2009. Biological control agents in plant disease control. In: Disease Control in Crops: Biological and Environmentally Friendly Approaches, ed. by D. Walters, pp. 27-61. Wiley-Blackwell, Oxford, UK.
Wilson, M. and Lindow, S. E. 1993. Interaction between the biological control agent
Pseudomonas fluorescens A506 and
Erwinia amylovora in pear blossoms.
Phytopathology 83: 117-123.
Zengerer, V., Schmid, M., Bieri, M., Müller, D. C., Remus-Emsermann, M. N. P., Ahrens, C. H. et al. 2018.
Pseudomonas orientalis F9: a potent antagonist against phytopathogens with phytotoxic effect in the apple flower.
Front. Microbiol. 9: 145.