Aanen, D. K. and Debets, A. J. M. 2019. Mutation-rate plasticity and the germline of unicellular organisms.
Proc. R. Soc. B. 286: 20190128.
Acosta-Leal, R. and Xiong, Z. 2013. Intrahost mechanisms governing emergence of resistance-breaking variants of Potato virus Y.
Virology 437: 39-47.
Adhab, M., Angel, C., Leisner, S. and Schoelz, J. E. 2018. The P1 gene of Cauliflower mosaic virus is responsible for breaking resistance in
Arabidopsis thaliana ecotype Enkheim (En-2).
Virology 523: 15-21.
Adkins, S. 2000. Tomato spotted wilt virus: positive steps towards negative success.
Mol. Plant Pathol. 1: 151-157.
Ahangaran, A., Habibi, M. K., Mohammadi, G.-H. M., Winter, S. and García-Arenal, F. 2013. Analysis of Soybean mosaic virus genetic diversity in Iran allows the characterization of a new mutation resulting in overcoming Rsv4-resistance.
J. Gen. Virol. 94: 2557-2568.
Andino, R. and Domingo, E. 2015. Viral quasispecies.
Virology 479-480: 46-51.
Antignus, Y., Lachman, O., Pearlsman, M., Maslenin, L. and Rosner, A. 2008. A new pathotype of Pepper mild mottle virus (PMMoV) overcomes the L(4) resistance genotype of pepper cultivars.
Plant Dis. 92: 1033-1037.
Arribas, M., Kubota, K., Cabanillas, L. and Lázaro, E. 2014. Adaptation to fluctuating temperatures in an RNA virus is driven by the most stringent selective pressure.
PLoS ONE 9: e100940.
Ashby, J. A., Stevenson, C. E. M., Jarvis, G. E., Lawson, D. M. and Maule, A. J. 2011. Structure-based mutational analysis of eIF4E in relation to
sbm1 resistance to pea seed-borne mosaic virus in pea.
PLoS ONE 6: e15873.
Batuman, O., Turini, T. A., Oliveira, P. V., Rojas, M. R., Macedo, M., Mellinger, H. C. et al. 2016. First report of a resistance-breaking strain of Tomato spotted wilt virus infecting tomatoes with the Sw-5 tospovirus-resistance gene in California.
Plant Dis. 101: 637.
Beachy, R. N. 1999. Coat-protein-mediated resistance to tobacco mosaic virus: discovery mechanisms and exploitation.
Philos. Trans. R. Soc. Lond. B Biol. Sci. 354: 659-664.
Bendahmane, A., Kanyuka, K. and Baulcombe, D. C. 1999. The
Rx gene from potato controls separate virus resistance and cell death responses.
Plant Cell. 11: 781-791.
Bernet, G. P. and Elena, S. F. 2015. Distribution of mutational fitness effects and of epistasis in the 5’ untranslated region of a plant RNA virus.
BMC Evol. Biol. 15: 274.
Borrelli, V. M. G., Brambilla, V., Rogowsky, P., Marocco, A. and Lanubile, A. 2018. The enhancement of plant disease resistance using CRISPR/Cas9 technology.
Front. Plant Sci. 9: 1245.
Brown, J. K. M. 2015. Durable resistance of crops to disease: a Darwinian perspective.
Annu. Rev. Phytopathol. 53: 513-539.
Burdon, J. J., Barrett, L. G., Rebetzke, G. and Thrall, P. H. 2014. Guiding deployment of resistance in cereals using evolutionary principles.
Evol. Appl. 7: 609-624.
Cebolla-Cornejo, J., Soler, S. and Nuez, F. 2003. Control of disease induced by Tospoviruses in tomato: an update of the genetic approach. Phytopathol. Mediterr. 42: 207-219.
Cervera, H. and Elena, S. F. 2016. Genetic variation in fitness within a clonal population of a plant RNA virus.
Virus Evol. 2: vew006.
Choi, B. K., Koo, J. M., Ahn, H. J., Yum, H. J., Choi, C. W., Ryu, K. H. et al. 2005. Emergence of Rsv-resistance breaking Soybean mosaic virus isolates from Korean soybean cultivars.
Virus Res. 112: 42-51.
Chowda-Reddy, R. V., Sun, H., Chen, H., Poysa, V., Ling, H., Gijzen, M. et al. 2010. Mutations in the P3 protein of Soybean mosaic virus G2 isolates determine virulence on Rsv4-genotype soybean.
Mol. Plant-Microbe Interact. 24: 37-43.
Cruz, S. S. and Baulcombe, D. C. 1993. Molecular analysis of potato virus X isolates in relation to the potato hypersensitivity gene Nx.
Mol. Plant-Microbe Interact. 6: 707-714.
Csillery, G., Tobias, I. and Rusko, J. 1983. A new pepper strain of tomato mosaic virus. Acta Phytopathol. Acad. Sci. Hung. 18: 195-200.
Culver, J. N. and Dawson, W. O. 1989. Point mutations in the coat protein gene of tobacco mosaic virus induce hypersensitivity in
Nicotiana sylvestris.
Mol. Plant-Microbe Interact. 2: 209-213.
de Ronde, D., Butterbach, P. and Kormelink, R. 2014. Dominant resistance against plant viruses.
Front. Plant Sci. 5: 307.
Decroocq, V., Salvador, B., Sicard, O., Glasa, M., Cosson, P., SvanellaDumas, L. et al. 2009. The determinant of potyvirus ability to overcome the RTM resistance of
Arabidopsis thaliana maps to the N-terminal region of the coat protein.
Mol. Plant-Microbe Interact. 22: 1302-1311.
Decroocq, V., Sicard, O., Alamillo, J. M., Lansac, M., Eyquard, J. P., García, J. A. et al. 2006. Multiple resistance traits control Plum pox virus infection in
Arabidopsis thaliana.
Mol. Plant-Microbe Interact. 19: 541-549.
DeFilippis, V. R. and Villarreal, L. P. 2000. An introduction to the evolutionary ecology of viruses. In: Viral Ecology, ed. by C. J. Hurst, pp. 125-208. Academic Press, San Diego, CA, USA.
Diaz-Pendon, J. A., Truniger, V., Nieto, C., Garcia-Mas, J., Bendahmane, A. and Aranda, M. A. 2004. Advances in understanding recessive resistance to plant viruses.
Mol. Plant Pathol. 5: 223-233.
Dietzgen, R. G., Mann, K. S. and Johnson, K. N. 2016. Plant virusinsect vector interactions: current and potential future research directions.
Viruses. 8: 303.
Domingo, E. 1997. Rapid evolution of viral RNA genomes.
J. Nutr. 127(5 Suppl):958S-961S.
Domingo, E. 2016. Virus as Populations: Composition, Complexity, Dynamics and Biological Implications. Elsevier, Amsterdam, The Netherlands. pp. 412 pp.
Dreher, T. W. 2009. Role of tRNA-like structures in controlling plant virus replication.
Virus Res. 139: 217-229.
Duffy, S., Shackelton, L. A. and Holmes, E. C. 2008. Rates of evolutionary change in viruses: patterns and determinants.
Nat. Rev. Genet. 9: 267-276.
Elena, S. F., Bedhomme, S., Carrasco, P., Cuevas, J. M., de la Iglesia, F., Lafforgue, G. et al. 2011. The evolutionary genetics of emerging plant RNA viruses.
Mol. Plant-Microbe Interact. 24: 287-293.
Elena, S. F., Fraile, A. and García-Arenal, F. 2014. Evolution and emergence of plant viruses.
Adv. Virus Res. 88: 161-191.
Fabre, F., Montarry, J., Coville, J., Senoussi, R., Simon, V. and Moury, B. 2012. Modelling the evolutionary dynamics of viruses within their hosts: a case study using high-throughput sequencing.
PLoS Pathog. 8: e1002654.
Fermin, G. 2018. Host range, host-virus interactions, and virus transmission.
Viruses. 2018: 101-134.
Flor, H. H. 1971. Current status of the gene-for-gene concept.
Annu. Rev. Phytopathol. 9: 275-296.
Fraile, A., Alonso-Prados, J. L., Aranda, M. A., Bernal, J. J., Malpica, J. M. and García-Arenal, F. 1997. Genetic exchange by recombination or reassortment is infrequent in natural populations of a tripartite RNA plant virus.
J. Virol. 71: 934-940.
Fuchs, M. 2017. Pyramiding resistance-conferring gene sequences in crops.
Curr. Opin. Virol. 26: 36-42.
García-Arenal, F., Fraile, A. and Malpica, J. M. 2001. Variability and genetic structure of plant virus populations.
Annu. Rev. Phytopathol. 39: 157-186.
Genda, Y., Kanda, A., Hamada, H., Sato, K., Ohnishi, J. and Tsuda, S. 2007. Two amino acid substitutions in the coat protein of Pepper mild mottle virus are responsible for overcoming the L4 gene-mediated resistance in Capsicum spp.
Phytopathology 97: 787-793.
Ghazala, W. and Varrelmann, M. 2007. Tobacco rattle virus 29K movement protein is the elicitor of extreme and hypersensitive-like resistance in two cultivars of Solanum tuberosum.
Mol. Plant-Microbe Interact. 20: 1396-1405.
Goldbach, R., Bucher, E. and Prins, M. 2003. Resistance mechanisms to plant viruses: an overview.
Virus Res. 92: 207-212.
Gómez, P., Rodríguez-Hernández, A. M., Moury, B. and Aranda, M. A. 2009. Genetic resistance for the sustainable control of plant virus diseases: breeding, mechanisms and durability.
Eur. J. Plant Pathol. 125: 1-22.
Hajimorad, M. R., Eggenberger, A. L. and Hill, J. H. 2008. Adaptation of Soybean mosaic virus avirulent chimeras containing P3 sequences from virulent strains to Rsv1-genotype soybeans is mediated by mutations in HC-Pro.
Mol. Plant-Microbe Interact. 21: 937-946.
Hak, H. and Spiegelman, Z. 2021. The tomato brown rugose fruit virus movement protein overcomes
Tm-22 resistance in tomato while attenuating viral transport.
Mol. Plant-Microbe Interact. 34: 1024-1032.
Hamada, H., Takeuchi, S., Kiba, A., Tsuda, S., Hikichi, Y. and Okuno, T. 2002. Amino acid changes in Pepper mild mottle virus coat protein that affect L
3 gene-mediated resistance in pepper.
J. Gen. Plant Pathol. 68: 155-162.
Han, S.-J., Heo, K.-J., Choi, B. and Seo, J.-K. 2019. Recessive resistance: developing targets for genome editing to engineer viral disease resistant crops.
Res. Plant Dis. 25: 49-61. (In Korean)
Harper, S. J., Dawson, T. E. and Pearson, M. N. 2010. Isolates of Citrus tristeza virus that overcome
Poncirus trifoliata resistance comprise a novel strain.
Arch. Virol. 155: 471-480.
Harrison, B. D. 2002. Virus variation in relation to resistance-breaking in plants. Euphytica. 124: 181-192.
Hashimoto, M., Neriya, Y., Yamaji, Y. and Namba, S. 2016. Recessive resistance to plant viruses: potential resistance genes beyond translation initiation factors.
Front. Microbiol. 7: 1695.
Hébrard, E., Pinel-Galzi, A., Bersoult, A., Siré, C. and Fargette, D. 2006. Emergence of a resistance-breaking isolate of Rice yellow mottle virus during serial inoculations is due to a single substitution in the genome-linked viral protein VPg.
J. Gen. Virol. 87: 1369-1373.
Heo, K.-J., Kwon, S.-J., Kim, M.-K., Kwak, H.-R., Han, S.-J., Kwon, M.-J. et al. 2020. Newly emerged resistance-breaking variants of cucumber mosaic virus represent ongoing host-interactive evolution of an RNA virus.
Virus Evol. 6: veaa07.
Jeger, M. J., Madden, L. V. and Van Den Bosch, F. 2018. Plant virus epidemiology: applications and prospects for mathematical modeling and analysis to improve understanding and disease control.
Plant Dis. 102: 837-854.
Jenner, C. E., Sánchez, F., Nettleship, S. B., Foster, G. D., Ponz, F. and Walsh, J. A. 2000. The cylindrical inclusion gene of Turnip mosaic virus encodes a pathogenic determinant to the Brassica resistance gene TuRB01.
Mol. Plant-Microbe Interact. 13: 1102-1108.
Johansen, I. E., Lund, O. S., Hjulsager, C. K. and Laursen, J. 2001. Recessive resistance in
Pisum sativum and potyvirus pathotype resolved in a gene-for-cistron correspondence between host and virus.
J. Virol. 75: 6609-6614.
Jones, R. A. C. 1982. Breakdown of potato virus X resistance gene NX: selection of a group four strain from strain group three.
Plant Pathol. 31: 325-331.
Jones, R. A. C. 1985. Further studies on resistance-breaking strains of potato virus X.
Plant Pathol. 34: 182-189.
Joshi, R. K. and Nayak, S. 2010. Gene pyramiding-A broad spectrum technique for developing durable stress resistance in crops. Biotechnol. Mol. Biol. Rev. 5: 51-60.
Kang, B.-C., Yeam, I. and Jahn, M. M. 2005. Genetics of plant virus resistance.
Annu. Rev. Phytopathol. 43: 581-621.
Kang, W.-H., Hoang, N. H., Yang, H.-B., Kwon, J.-K., Jo, S.-H., Seo, J.-K. et al. 2010. Molecular mapping and characterization of a single dominant gene controlling CMV resistance in peppers (
Capsicum annuum L.).
Theor. Appl. Genet. 120: 1587-1596.
Kang, W.-H., Seo, J.-K., Chung, B. N., Kim, K.-H. and Kang, B.-C. 2012. Helicase domain encoded by Cucumber mosaic virus RNA1 determines systemic infection of
Cmr1 in pepper.
PLoS ONE 7: e43136.
Keen, N. T. 1990. Gene-for-gene complementarity in plant-pathogen interactions.
Annu. Rev. Genet. 24: 447-463.
Keller, K. E., Johansen, I. E., Martin, R. R. and Hampton, R. O. 1998. Potyvirus genome-linked protein (VPg) determines pea seedborne mosaic virus pathotype-specific virulence in
Pisum sativum.
Mol. Plant-Microbe Interact. 11: 124-130.
Kim, M.-K., Seo, J.-K., Kwak, H.-R., Kim, J.-S., Kim, K.-H., Cha, B.-J. et al. 2014. Molecular genetic analysis of cucumber mosaic virus populations infecting pepper suggests unique patterns of evolution in Korea.
Phytopathology 104: 993-1000.
Kitajima, M., Sassi, H. P. and Torrey, J. R. 2018. Pepper mild mottle virus as a water quality indicator.
npj Clean Water. 1: 19.
Knorr, D. A. and Dawson, W. O. 1988. A point mutation in the tobacco mosaic virus capsid protein gene induces hypersensitivity in
Nicotiana sylvestris.
Proc. Natl. Acad. Sci. U. S. A. 85: 170-174.
Kobayashi, K., Sekine, K.-T. and Nishiguchi, M. 2014. Breakdown of plant virus resistance: can we predict and extend the durability of virus resistance?
J. Gen. Plant Pathol. 80: 327-336.
Kurath, G. and Palukaitis, P. 1990. Serial passage of infectious transcripts of a cucumber mosaic virus satellite RNA clone results in sequence heterogeneity. Virology. 176: 8-15. 176: 8-15
Kutnjak, D., Rupar, M., Gutierrez-Aguirre, I., Curk, T., Kreuze, J. F., Ravnikar, M. et al. 2015. Deep sequencing of virus-derived small interfering RNAs and RNA from viral particles shows highly similar mutational landscapes of a plant virus population.
J. Virol. 89: 4760-4769.
Kwon, S.-J., Cho, Y.-E., Kwon, O.-H., Kang, H.-G. and Seo, J.-K. 2021. Resistance-breaking tomato spotted wilt virus variant that recently occurred in pepper in South Korea is a genetic reassortant.
Plant Dis. Advanced online publication.
https://doi.org/10.1094/PDIS-01-21-0205-SC
Lecoq, H., Moury, B., Desbiez, C., Palloix, A. and Pitrat, M. 2004. Durable virus resistance in plants through conventional approaches: a challenge.
Virus Res. 100: 31-39.
Lellis, A. D., Kasschau, K. D., Whitham, S. A. and Carrington, J. C. 2002. Loss-of-susceptibility mutants of
Arabidopsis thaliana reveal an essential role for eIF(iso)4E during potyvirus infection.
Curr. Biol. 12: 1046-1051.
Lindbo, J. A. and Falk, B. W. 2017. The impact of “coat proteinmediated virus resistance” in applied plant pathology and basic research.
Phytopathology 107: 624-634.
Liu, J.-Z., Fang, Y. and Pang, H. 2016. The current status of the soybean-Soybean mosaic virus (SMV) pathosystem.
Front. Microbiol. 7: 1906.
López, C., Aramburu, J., Galipienso, L., Soler, S., Nuez, F. and Rubio, L. 2011. Evolutionary analysis of tomato Sw-5 resistance-breaking isolates of Tomato spotted wilt virus. J. Gen. Virol. 92: 201-215.
Macedo, M. A., Rojas, M. R. and Gilbertson, R. L. 2019. First report of a resistance-breaking strain of Tomato spotted wilt orthotospovirus infecting sweet pepper with the Tsw resistance gene in California, U.S.A.
Plant Dis. 103: 1048.
Mahajan, S. K., Chisholm, S. T., Whitham, S. A. and Carrington, J. C. 1998. Identification and characterization of a locus (RTM1) that restricts long-distance movement of tobacco etch virus in
Arabidopsis thaliana.
Plant J. 14: 177-186.
Malcuit, I., Marano, M. R., Kavanagh, T. A., De Jong, W., Forsyth, A. and Baulcombe, D. C. 1999. The 25-kDa movement protein of PVX elicits Nb-mediated hypersensitive cell death in potato.
Mol. Plant-Microbe Interact. 12: 536-543.
Mauck, K. E. 2016. Variation in virus effects on host plant phenotypes and insect vector behavior: what can it teach us about virus evolution?
Curr. Opin. Virol. 21: 114-123.
Mauck, K. E., Chesnais, Q. and Shapiro, L. R. 2018. Evolutionary determinants of host and vector manipulation by plant viruses.
Adv. Virus Res. 101: 189-250.
McLeish, M. J., Fraile, A. and García-Arenal, F. 2019. Evolution of plant-virus interactions: host range and virus emergence.
Curr. Opin. Virol. 34: 50-55.
Meshi, T., Motoyoshi, F., Adachi, A., Watanabe, Y., Takamatsu, N. and Okada, Y. 1988. Two concomitant base substitutions in the putative replicase genes of tobacco mosaic virus confer the ability to overcome the effects of a tomato resistance gene, Tm-1.
EMBO J. 7: 1575-1581.
Meshi, T., Motoyoshi, F., Maeda, T., Yoshiwoka, S., Watanabe, H. and Okada, Y. 1989. Mutations in the tobacco mosaic virus 30-kD protein gene overcome Tm-2 resistance in tomato.
Plant Cell. 1: 515-522.
Mine, A. and Okuno, T. 2012. Composition of plant virus RNA replicase complexes.
Curr. Opin. Virol. 2: 669-675.
Moffett, P. 2009. Mechanisms of recognition in dominant R gene mediated resistance.
Adv. Virus Res. 75: 1-33.
Montarry, J., Cartier, E., Jacquemond, M., Palloix, A. and Moury, B. 2012. Virus adaptation to quantitative plant resistance: erosion or breakdown?
J. Evol. Biol. 25: 2242-2252.
Moreno-Pérez, M. G., García-Luque, I., Fraile, A. and García-Arenal, F. 2016. Mutations that determine resistance breaking in a plant RNA virus have pleiotropic effects on its fitness that depend on the host environment and on the type, single or mixed, of infection.
J. Virol. 90: 9128-9137.
Morley, V. J. and Turner, P. E. 2017. Dynamics of molecular evolution in RNA virus populations depend on sudden versus gradual environmental change.
Evolution. 71: 872-883. 71: 872-883
Morozov, S. Y., Dolja, V. V. and Atabekov, J. G. 1989. Probable reassortment of genomic elements among elongated RNA-containing plant viruses.
J. Mol. Evol. 29: 52-62.
Nakahara, K. S., Shimada, R., Choi, S.-H., Yamamoto, H., Shao, J. and Uyeda, I. 2010. Involvement of the P1 cistron in overcoming eIF4E-mediated recessive resistance against Clover yellow vein virus in Pea.
Mol. Plant-Microbe Interact. 23: 1460-1469.
Nelson, R. R. 1978. Genetics of horizontal resistance to plant diseases.
Annu. Rev. Phytopathol. 16: 359-378.
Nutter, F. W.. Jr, Kuhn, C. W. and All, J. N. 1989. Models to estimate yield losses in bell pepper caused by tobacco etch virus epidemics. Phytopathology 79: 1213.
Ozturk, P. K., Argun, D., Baloglu, S. and Keles, D. 2020. Effect of tobacco etch virus (TEV) on yield and quality of red pepper in Turkey.
Acta Sci. Pol. Hortorum Cultus. 19: 101-111.
Palukaitis, P. and Yoon, J.-Y. 2020. R gene mediated defense against viruses.
Curr. Opin. Virol. 45: 1-7.
Parlevliet, J. E. 2002. Durability of resistance against fungal, bacterial and viral pathogens: present situation. Euphytica. 124: 147-156.
Pelham, J., Fletcher, J. T. and Hawkins, J. H. 2008. The establishment of a new strain of tobacco mosaic virus resulting from the use of resistant varieties of tomato.
Ann. Appl. Biol. 65: 293-297.
Pinel-Galzi, A., Dubreuil-Tranchant, C., Hébrard, E., Mariac, C., Ghesquière, A. and Albar, L. 2016. Mutations in Rice yellow mottle virus polyprotein P2a involved in RYMV2 gene resistance breakdown.
Front. Plant Sci. 7: 1779.
Piquerez, S. J. M., Harvey, S. E., Beynon, J. L. and Ntoukakis, V. 2014. Improving crop disease resistance: lessons from research on Arabidopsis and tomato.
Front. Plant Sci. 5: 671.
Rachmadi, A. T., Kitajima, M., Watanabe, K., Okabe, S. and Sano, D. 2018. Disinfection as a selection pressure on RNA virus evolution.
Environ. Sci. Technol. 52: 2434-2435.
Roossinck, M. J. 1997. Mechanisms of plant virus evolution.
Annu. Rev. Phytopathol. 35: 191-209.
Roossinck, M. J. 2003. Plant RNA virus evolution.
Curr. Opin. Microbiol. 6: 406-409.
Roossinck, M. J. 2005. Symbiosis versus competition in plant virus evolution.
Nat. Rev. Microbiol. 3: 917-924.
Ruffel, S., Dussault, M.-H., Palloix, A., Moury, B., Bendahmane, A., Robaglia, C. et al. 2002. A natural recessive resistance gene against potato virus Y in pepper corresponds to the eukaryotic initiation factor 4E (eIF4E).
Plant J. 32: 1067-1075. . 32: 1067-1075
Saito, T., Meshi, T., Takamatsu, N. and Okada, Y. 1987. Coat protein gene sequence of tobacco mosaic virus encodes a host response determinant.
Proc. Natl. Acad. Sci. U. S. A. 84: 6074-6077.
Sardanyés, J. and Elena, S. F. 2011. Quasispecies spatial models for RNA viruses with different replication modes and infection strategies.
PLoS ONE 6: e24884.
Schneider, W. L. and Roossinck, M. J. 2001. Genetic diversity in RNA virus quasispecies is controlled by host-virus interactions.
J. Virol. 75: 6566-6571.
Seo, J.-K., Lee, S.-H. and Kim, K.-H. 2009. Strain-specific cylindrical inclusion protein of soybean mosaic virus elicits extreme resistance and a lethal systemic hypersensitive response in two resistant soybean cultivars.
Mol. Plant-Microbe Interact. 22: 1151-1159.
Simon, A. E. and Bujarski, J. J. 1994. RNA-RNA recombination and evolution in virus-infected plants.
Annu. Rev. Phytopathol. 32: 337-362.
Sztuba-Solińska, J., Urbanowicz, A., Figlerowicz, M. and Bujarski, J. J. 2011. RNA-RNA recombination in plant virus replication and evolution.
Annu. Rev. Phytopathol. 49: 415-443.
Thresh, J. M. 2006. Plant virus epidemiology: the concept of host genetic vulnerability.
Adv. Virus Res. 67: 89-125.
Tran, P.-T., Widyasari, K., Seo, J.-K. and Kim, K.-H. 2018. Isolation and validation of a candidate Rsv3 gene from a soybean genotype that confers strain-specific resistance to soybean mosaic virus. Virology. 513: 153-159.
Traoré, O., Pinel-Galzi, A., Issaka, S., Poulicard, N., Aribi, J., Aké, S. et al. 2010. The adaptation of Rice yellow mottle virus to the eIF(iso)4G-mediated rice resistance. Virology. 408: 103-108.
Tromas, N., Zwart, M. P., Poulain, M. and Elena, S. F. 2014. Estimation of the
in vivo recombination rate for a plant RNA virus.
J. Gen. Virol. 95: 724-732.
Truniger, V. and Aranda, M. A. 2009. Recessive resistance to plant viruses.
Adv. Virus Res. 75: 119-159.
Tsuda, S., Kirita, M. and Watanabe, Y. 1998. Characterization of a pepper mild mottle tobamovirus strain capable of overcoming the L3 gene-mediated resistance, distinct from the resistance-breaking Italian isolate.
Mol. Plant-Microbe Interact. 11: 327-331.
Weber, H., Schultze, S. and Pfitzner, A. J. 1993. Two amino acid substitutions in the tomato mosaic virus 30-kilodalton movement protein confer the ability to overcome the Tm-2(2) resistance gene in the tomato.
J. Virol. 67: 6432-6438.
White, P. S., Morales, F. and Roossinck, M. J. 1995. Interspecific reassortment of genomic segments in the evolution of cucumoviruses. Virology. 207: 334-337. 207: 334-337
Yoon, J.-Y., Her, N.-H., Cho, I. S., Chung, B. N. and Choi, S.-K. 2021. First report of a resistance-breaking strain of Tomato spotted wilt orthotospovirus infecting
Capsicum annuum carrying the Tsw resistance gene in South Korea.
Plant Dis. Advanced online publication.
https://doi.org/10.1094/PDIS-09-20-1952-PDN
Zaccomer, B., Haenni, A. L. and Macaya, G. 1995. The remarkable variety of plant RNA virus genomes.
J. Gen. Virol. 76(Pt 2):231-247.