Ali, M. E., Hashim, U., Mustafa, S., Man, Y. B. C., Dhahi, T. S., Kashif, M. et al. 2012. Analysis of pork adulteration in commercial meatballs targeting porcine-specific mitochondrial cytochrome b gene by TaqMan probe real-time polymerase chain reaction.
Meat Sci. 91: 454-459.
Bahder, B. W., Zalom, F. G., Jayanth, M. and Sudarshana, M. R. 2016. Phylogeny of geminivirus coat protein sequences and digital PCR aid in identifying
Spissistilus festinus as a vector of grapevine red blotch-associated virus.
Phytopathology 106: 1223-1230.
Baker, M. 2012. Digital PCR hits its stride.
Nat. Methods 9: 541-544.
Cho, J.-D., Kim, J.-S., Kim, J.-Y., Kim, J.-H., Lee, S.-H., Choi, G.-S. et al. 2005. Occurrence and symptoms of tomato spotted wilt virus on vegetables in Korea (I).
Res. Plant Dis. 11: 213-216.
Cho, J. J., Mau, R. F. L., Hamasaki, R. T. and Gonsalves, D. 1988. Detection of tomato spotted wilt virus in individual thrips by enzyme-linked immunosorbent assay.
Phytopathology 78: 1348-1352.
Debreczeni, D. E., Ruiz-Ruiz, S., Aramburu, J., López, C., Belliure, B., Galipienso, L. et al. 2011. Detection, discrimination and absolute quantitation of tomato spotted wilt virus isolates using real time RT-PCR with TaqMan MGB probes.
J. Virol. Methods 176: 32-37.
Dube, S., Qin, J. and Ramakrishnan, R. 2008. Mathematical analysis of copy number variation in a DNA sample using digital PCR on a nanofluidic device.
PLoS ONE 3: e2876.
Fan, H. C. and Quake, S. R. 2007. Detection of aneuploidy with digital polymerase chain reaction.
Anal. Chem. 79: 7576-7579.
Floren, C., Wiedemann, I., Brenig, B., Schütz, E. and Beck, J. 2015. Species identification and quantification in meat and meat products using droplet digital PCR (ddPCR).
Food Chem. 173: 1054-1058.
Fukuta, S., Ohishi, K., Yoshida, K., Mizukami, Y., Ishida, A. and Kanbe, M. 2004. Development of immunocapture reverse transcription loop-mediated isothermal amplification for the detection of tomato spotted wilt virus from chrysanthemum.
J. Virol. Methods 121: 49-55.
Gutiérrez-Aguirre, I., Rački, N., Dreo, T. and Ravnikar, M. 2015. Droplet digital PCR for absolute quantification of pathogens. Plant Pathology: Methods in Molecular Biology. Vol. 1302, ed Lacomme, C.pp. 331-347. Humana Press, New York, NY, USA.
Han, J.-H., Choi, H.-S., Lee, J., Kim, J.-D., Lee, W. P., Choi, H.-S. et al. 2012. Screening of tomato spotted wilt virus resistance in tomato accessions.
Korean J. Hortic. Sci. Technol. 30: 171-177.
Han, J.-H., Lee, W. P., Lee, J., Kim, M.-K., Choi, H.-S. and Yoon, J. B. 2011. Symptom and resistance of cultivated and wild
Capsicum accessions to tomato spotted wilt virus.
Res. Plant Dis. 17: 59-65.
Higuchi, R., Fockler, C., Dollinger, G. and Watson, R. 1993. Kinetic PCR analysis: real-time monitoring of DNA amplification reactions.
Bio/Technology 11: 1026-1030.
Hindson, B. J., Ness, K. D., Masquelier, D. A., Belgrader, P., Heredia, N. J., Makarewicz, A. J. et al. 2011. High-throughput droplet digital PCR system for absolute quantitation of DNA copy number.
Anal. Chem. 83: 8604-8610.
Hull, R. 2013. Plant Virology. Academic Press, San Diego, CA, USA. 1118 pp.
Karavina, C. and Gubba, A. 2017. Detection and characterization oftomato spotted wilt virus infecting field and greenhouse-grown crops in Zimbabwe.
Eur. J. Plant Pathol. 149: 933-944.
Kim, J.-H., Choi, G.-S., Kim, J.-S. and Choi, J.-K. 2004. Characterization of tomato spotted wilt virus from paprika in Korea.
Plant Pathol. J. 20: 297-301.
Kurstak, E. 1981. Handbook of Plant Virus Infections: Comparative Diagnosis.. Elsevier, Amsterdam, The Netherlands. 944 pp.
Lee, H.-J., Cho, I.-S., Ju, H.-J. and Jeong, R.-D. 2021a. Development of a reverse transcription droplet digital PCR assay for sensitive detection of peach latent mosaic viroid.
Mol. Cell. Probes. 58: 101746.
Lee, H.-J., Cho, I.-S., Ju, H.-J. and Jeong, R.-D. 2021b. Rapid and visual detection of tomato spotted wilt virus using recombinase polymerase amplification combined with lateral flow strips.
Mol. Cell. Probes. 57: 101727.
Liu, Y., Wang, Y., Wang, Q., Zhang, Y., Shen, W., Li, R. et al. 2019. Development of a sensitive and reliable reverse transcription droplet digital PCR assay for the detection of citrus yellow vein clearing virus.
Arch. Virol. 164: 691-697.
Mehle, N., Dobnik, D., Ravnikar, M. and Novak, M. P. 2018. Validated reverse transcription droplet digital PCR serves as a higher order method for absolute quantification of potato virus Y strains.
Anal. Bioanal. Chem. 410: 3815-3825.
Morrison, T., Hurley, J., Garcia, J., Yoder, K., Katz, A., Roberts, D. et al. 2006. Nanoliter high throughput quantitative PCR.
Nucleic Acids Res. 34: e123.
Nakano, M., Komatsu, J., Matsuura, S.-I., Takashima, K., Katsura, S. and Mizuno, A. 2003. Single-molecule PCR using water-in-oil emulsion.
J. Biotechnol. 102: 117-124.
Oetting, R. 1991. The effect of host species and different plant components on thrips feeding and development. In: Voris-Thrips-Plant Interaction of Tomato Spotted Wilt Virus, Proceedings of a USDA Workshop., eds. by H. Hsu and R. H. Lawson, pp. 15-19. ARS-US Department of Agriculture, Agricultural Research Service, Beltsville, MD, USA.
Ottesen, E. A., Hong, J. W., Quake, S. R. and Leadbetter, J. R. 2006. Microfluidic digital PCR enables multigene analysis of individual environmental bacteria.
Science. 314: 1464-1467.
Pandey, B., Mallik, I. and Gudmestad, N. C. 2020. Development and application of a real-time reverse-transcription PCR and droplet digital PCR assays for the direct detection of potato mop top virus in soil.
Phytopathology 110: 58-67.
Parrella, G., Gognalons, P., Gebre-Selassiè, K., Vovlas, C. and Marchoux, G. 2003. An update of the host range of tomato spotted wilt virus. J. Plant Pathol. 85: 227-264.
Peters, D., De Avila, A. C., Kitajima, E. W., Resende, R. O., De Haan, P. and Goldbach, R. 1991. An overview of tomato spotted wilt virus. In: Voris-Thrips-Plant Interaction of Tomato Spotted Wilt Virus, Proceedings of a USDA Workshop., eds. by H. Hsu and R. H. Lawson, pp. 1-14. ARS-US Department of Agriculture, Agricultural Research Service, Beltsville, MD, USA.
Pinheiro, L. B., Coleman, V. A., Hindson, C. M., Herrmann, J., Hindson, B. J., Bhat, S. et al. 2012. Evaluation of a droplet digital polymerase chain reaction format for DNA copy number quantification.
Anal. Chem. 84: 1003-1011.
Roberts, C. A., Dietzgen, R. G., Heelan, L. A. and Maclean, D. J. 2000. Real-time RT-PCR fluorescent detection of tomato spotted wilt virus.
J. Virol. Methods 88: 1-8.
Sastry, K. S. and Zitter, T. A. 2014. Plant Virus and Viroid Diseases in the Tropics. Vol. 2. Epidemiology and Management.. Springer Science & Business Media, New York, NY, USA. 489 pp.
Vogelstein, B. and Kinzler, K. W. 1999. Digital PCR.
Proc. Natl. Acad. Sci. U. S. A. 96: 9236-9241.
Warren, L., Bryder, D., Weissman, I. L. and Quake, S. R. 2006. Transcription factor profiling in individual hematopoietic progenitors by digital RT-PCR.
Proc. Natl. Acad. Sci. U. S. A. 103: 17807-17812.
Yang, R., Paparini, A., Monis, P. and Ryan, U. 2014. Comparison of next-generation droplet digital PCR (ddPCR) with quantitative PCR (qPCR) for enumeration of
Cryptosporidium oocysts in faecal samples.
Int. J. Parasitol. 44: 1105-1113.