Albersheim, P. and Valent, B. S. 1978. Host-pathogen interactions in plants: plants, when exposed to oligosaccharides of fungal origin, defend themselves by accumulating antibiotics.
J. Cell Biol. 78: 627-643.
Ayers, A. R., Ebel, J., Valent, B. and Albersheim, P. 1976. Host-pathogen interactions: X. Fractionation and biological activity of an elicitor isolated from the mycelial walls of
Phytophthora megasperma var.
sojaes.
Plant Physiol. 57: 760-765.
Aziz, A., Poinssot, B., Daire, X., Adrian, M., Bézier, A., Lambert, B. et al. 2003. Laminarin elicits defense responses in grapevine and induces protection against Botrytis cinerea and
Plasmopara viticola.
Mol. Plant Microbe Interact. 16: 1118-1128.
Canto, T., Prior, D. A., Hellwald, K. H., Oparka, K. J. and Palukaitis, P. 1997. Characterization of cucumber mosaic virus. IV. Movement protein and coat protein are both essential for cell-to-cell movement of cucumber mosaic virus.
Virology 237: 237-248.
Caranta, C. and Palloix, A. 1996. Both common and specific genetic factors are involved in polygenic resistance of pepper to several potyviruses.
Theor. Appl. Genet. 92: 15-20.
Caranta, C., Pflieger, S., Lefebvre, V., Daubèze, A. M., Thabuis, A. and Palloix, A. 2002. QTLs involved in the restriction of
Cucumber mosaic virus (CMV) long-distance movement in pepper.
Theor. Appl. Genet. 104: 586-591.
Cho, J. D., Kim, J. S., Lee, S. H., Choi, G. S. and Chung, B. N. 2007. Viruses and symptoms on peppers, and their infection types in Korea.
Res. Plant Dis. 13: 75-81. (In Korean)
Choi, G. S., Kim, J. H., Lee, D. H., Kim, J. S. and Ryu, K. H. 2005. Occurrence and distribution of viruses infecting pepper in Korea.
Plant Pathol. 21: 258-261. (In Korean)
Choi, G.-S., Kwon, S.-J., Choi, S.-K., Cho, I.-S. and Yoon, J.-Y. 2015. Characteristics of cucumber mosaic virus-GTN and resistance evaluation of chili pepper cultivars to two cucumber mosaic virus isolates.
Res. Plant Dis. 21: 99-102. (In Korean)
Choi, H. K., Song, G. C., Yi, H.-S. and Ryu, C.-M. 2014. Field evaluation of the bacterial volatile derivative 3-pentanol in priming for induced resistance in pepper.
J. Chem. Ecol. 40: 882-892.
Choi, S., Lee, J.-H., Kang, W.-H., Kim, J., Huy, H. N., Park, S.-W. et al. 2018. Identification of cucumber mosaic resistance 2 (cmr2) that confers resistance to a new cucumber mosaic virus isolate P1 (CMV-P1) in pepper (
Capsicum spp.).
Front. Plant Sci. 9: 1106.
Doolittle, S. P. 1916. A new infectious mosaic disease of cucumber. Phytopathology 6: 145-147.
Ebel, J., Ayers, A. R. and Albersheim, P. 1976. Host-pathogen interactions: XII. Response of suspension-cultured soybean cells to the elicitor isolated from
Phytophthora megasperma var.
sojae, a fungal pathogen of soybeans.
Plant Physiol. 57: 775-779.
Fereres, A. and Perry, K. L. 2019. Movement between plants: Horizontal transmission. In: In: Cucumber Mosaic Virus, eds. by P. Palukaitis and F. García-Arenal, pp. 173-184. The American Phytopathological Society, St. Paul, MN, USA.
Fesel, P. H. and Zuccaro, A. 2016. β-glucan: crucial component of the fungal cell wall and elusive MAMP in plants.
Fugal Genet. Biol. 90: 53-60.
Gilbert, W. W. 1916. Cucumber mosaic disease. Phytopathology 6: 143-144.
Giner, A., Pascual, L., Bourgeois, M., Gyetvai, G., Rios, P., Picó, B. et al. 2017. A mutation in the melon Vacuolar Protein Sorting 41 prevents systemic infection of cucumber mosaic virus.
Sci. Rep. 7: 10471.
Grube, R. C., Zhang, Y., Murphy, J. F., Loaiza-Figueroa, F., Lackney, V. K., Provvidenti, R. et al. 2000. New source of resistance to cucumber mosaic virus in
Capsicum frutescens.
Plant Dis. 84: 885-891.
Habili, N. and Francki, R. I. B. 1974. Comparative studies on tomato aspermy and cucumber mosaic viruses. II. Virus stability.
Virology 60: 29-36.
Hayes, R. J. and Buck, K. W. 1990. Complete replication of a eukaryotic virus RNA
in vitro by a purified RNA-dependent RNA polymerase. Cell. 63: 363-368.
Heil, M. and Baldwin, I. T. 2002. Fitness costs of induced resistance: emerging experimental support for a slippery concept.
Trends Plant Sci. 7: 61-67.
Jagger, I. C. 1916. Experiments with the cucumber mosaic disease. Phytopathology 6: 148-151.
Kang, W.-H., Hoang, N. H., Yang, H.-B., Kwon, J.-K., Jo, S.-H., Seo, J.-K. et al. 2010. Molecular mapping and characterization of a single dominant gene controlling CMV resistance in peppers (
Capsicum annuum L.).
Theor. Appl. Genet. 120: 1587-1596.
Kaplan, I. B., Gal-On, A. and Palukaitis, P. 1997. Characterization of cucumber mosaic virus: III. Localization of sequences in the movement protein controlling systemic infection in cucurbits.
Virology 230: 343-349.
Kazemi, M. 2013. Foliar application of salicylic acid and calcium on yield, yield component and chemical properties of strawberry. Bull. Environ. Pharmacol. Life Sci. 2: 19-23.
Klarzynski, O., Plesse, B., Joubert, J.-M., Yvin, J.-C., Kopp, M., Kloareg, B. et al. 2000. Linear β-1,3 glucans are elicitors of defense responses in tobacco.
Plant Physiol. 124: 1027-1038.
Kopp, M., Rouster, J., Fritig, B., Darvill, A. and Albersheim, P. 1989. Host-pathogen interactions.
Plant Physiol. 90: 208-216.
Kwon, S.-J., Cho, I.-S., Yoon, J.-Y. and Chung, B.-N. 2018. Incidence and occurrence pattern of viruses on peppers growing in fields in Korea.
Res. Plant Dis. 24: 66-74.
Lapidot, M., Paran, I., Ben-Joseph, R., Ben-Harush, S., Pilowsky, M., Cohen, S. et al. 1997. Tolerance to cucumber mosaic virus in pepper: development of advanced breeding lines and evaluation of virus level.
Plant Dis. 81: 185-188.
Lee, G. H. and Ryu, C.-M. 2016. Spraying of leaf-colonizing Bacillus amyloliquefaciens protects pepper from cucumber mosaic virus.
Plant Dis. 100: 2099-2105.
Lee, J. H., Hong, J. S., Ju, H.-J. and Park, D. H. 2015. Occurrence of viral diseases in field-cultivated pepper in Korea from 2006 to 2010.
Korean J. Org. Agric. 23: 123-131. (In Korean)
Lee, M. Y., Lee, J. H., Ahn, H. I., Yoon, J. Y., Her, N. H., Choi, J. K. et al. 2006. Identification and sequence analysis of RNA3 of a resistance-breaking cucumber mosaic virus isolate on
Capsicum annuum.
Plant Pathol. J. 22: 265-270.
Ménard, R., Alban, S., de Ruffray, P., Jamois, F., Franz, G., Fritig, B. et al. 2004. β-1,3 glucan sulfate, but not β-1,3 glucan, induces the salicylic acid signaling pathway in tobacco and
Arabidopsis.
Plant Cell 16: 3020-3032.
Ménard, R., de Ruffray, P., Fritig, B., Yvin, J.-C. and Kauffmann, S. 2005. Defense and resistance-inducing activities in tobacco of the sulfated β-1,3 glucan PS3 and its synergistic activities with the unsulfated molecule.
Plant Cell Physiol. 46: 1964-1972.
Muramatsu, D., Okabe, M., Takaoka, A., Kida, H. and Iwai, A. 2017.
Aureobasidium pullulans produced β-glucan is effective to enhance Kurosengoku soybean extract induced thrombospondin-1 expression.
Sci. Rep. 7: 2831.
Ngullie, C. R., Tank, R. V. and Bhanderi, D. R. 2014. Effect of salicylic acid and humic acid on flowering, fruiting, yield and quality of mango (
Mangifera indica L.) cv. KESAR.
Adv. Res. J. Crop Improv. 5: 136-139.
Pasternak, T., Groot, E. P., Kazantsev, F. V., Teale, W., Omelyanchuk, N. and Kovrizhnykh, V. et al. 2019. Salicylic acid affects root meristem patterning via auxin distribution in a concentration-dependent manner.
Plant Physiol. 180: l725-1739.
Peden, K. W. C. and Symons, R. H. 1973. Cucumber mosaic virus contains a functionally divided genome.
Virology 53: 487-492.
Reunov, A. V., Lapshina, L. A., Nagorskaya, V. P. and Elyakova, L. A. 1996. Effect of 1,3;1,6‐β‐D‐glucan on infection of detached tobacco leaves with tobacco mosaic virus.
J. Phytopathol. 144: 247-249.
Scholthof, K.-B. G., Adkins, S., Czosnek, H., Palukaitis, P., Jacquot, E. and Hohn, T. et al. 2011. Top 10 plant viruses in molecular plant pathology.
Mol. Plant Pathol. 12: 938-954.
Sekine, K.-T., Kawakami, S., Hase, S., Kubota, M., Ichinose, Y., Shah, J. et al. 2008. High level expression of a virus resistance gene, RCY 1, confers extreme resistance to cucumber mosaic virus in
Arabidopsis thaliana.
Mol. Plant-Microbe Interact. 21: 1398-1407.
Seo, Y.-S., Rojas, M. R., Lee, J.-Y., Lee, S.-W., Jeon, J.-S., Ronald, P. et al. 2006. A viral resistance gene from common bean functions across plant families and is up-regulated in a non-virus-specific manner.
Proc. Natl. Acad. Sci. U. S. A. 103: 11856-11861.
Shaaban, M. M., Abd El-Aal, A. M. K. and Ahmed, F. F. 2011. Insight into the effect of salicylic acid on apple trees growing under sandy saline soil. Res. J. Agric. Biol. Sci. 7: 150-156.
Sharp, J. K., McNeil, M. and Albersheim, P. 1984a. The primary structures of one elicitor-active and seven elicitor-inactive hexa(beta-D-glucopyranosyl)-D-glucitols isolated from the mycelial walls of
Phytophthora megasperma f. sp.
glycinea.
J. Biol. Chem. 259: 11321-11336.
Sharp, J. K., Valent, B. and Albersheim, P. 1984b. Purification and partial characterization of a beta-glucan fragment that elicits phytoalexin accumulation in soybean.
J. Biol. Chem. 259: 11312-11320.
Song, G. C., Choi, H. K. and Ryu, C.-M. 2013. The folate precursor para-aminobenzoic acid elicits induced resistance against cucumber mosaic virus and Xanthomonas axonopodis.
Ann. Bot. 111: 925-934.
Statistics Korea. 2019. Production of chili pepper, sesame and highland potatoes in 2019. URL
http://kostat.go.kr/ [cited 10 January 2021]
Suzuki, K., Kuroda, T., Miura, Y. and Murai, J. 2003. Screening and field trials of virus resistant sources in
Capsicum spp.
Plant Dis. 87: 779-783.
Takahashi, H., Miller, J., Nozaki, Y., Takeda, M., Shah, J., Hase, S. et al. 2002. RCY 1, an Arabidopsis thaliana RPP8/HRT family resistance gene, conferring resistance to cucumber mosaic virus requires salicylic acid, ethylene and a novel signal transduction mechanism. Plant J.. 32: 655-667.
Yoon, J.-Y., Choi, S.-K., Palukaitis, P. and Gray, S. M. 2011. Agrobacterium-mediated infection of whole plants by yellow dwarf viruses.
Virus Res. 160: 428-434.
Yoon, J. Y., Paluakaitis, P. and Choi, S. K. 2019. Host range. In: In: Cucumber Mosaic Cirus, eds. by P. Palukaitis and F. García-Arenal, pp. 15-18. The American Phytopathological Society, St. Paul, MN, USA.